Sleep characteristics of children with motor impairments

Ms Kemi E Wright1, Dr Ashleigh L Thornton1, Dr Melissa K Licari1, Dr Siobhan L Reid1, Dr Jennifer Girschik, & Dr Bonnie J Furzer1

1 UWA Paediatric Exercise Health Research Group, School of Sport Science, Exercise and Health, The University of Western Australia
2 UWA Centre for Medical Research, School of Population Health, The University of Western Australia

The purpose of this study was to determine the feasibility of objectively measuring the sleep characteristics of children with motor impairments using tri-axial accelerometers.

Sleep has been identified as a key element to the healthy growth and development of children. Disturbances in sleep have been associated with cognitive deficits, poorer academic performance, behavioural problems, mood disturbances and physiological changes such as increased adiposity1-4. There has also been emerging evidence that sleep plays a vital role in motor skill learning and memory consolidation5. There has been limited research into the sleep characteristics of children with motor impairments. Preliminary studies suggest children with motor impairments have greater sleep disturbance than typically developing children however, to date, sleep has not been objectively measured in this population6.

RESULTS

Of the 24 children recruited for this pilot study, 10 were considered LMP on their MABC-2 result (≤ 15th percentile) and results were compared to typically developing peers (>15th percentile). Aside from motor proficiency, no significant differences were seen in group descriptive characteristics including age (mean age = 7.8 SD ± 1.8), BMI and body composition (mean BMI = 16.7 SD ± 2.2). However, the groups were not matched for gender due to the higher prevalence of males in the clinical population (female = 9, male = 11). Of the 24 children recruited, 20 completed the requirements for sleep analysis, including parent completion of the sleep diaries. Four participants failed to complete the required Actigraph wear time due to the child refusing to wear the watch. Between groups there was no statistically significant difference between total sleep time, however significant differences were seen across sleep efficiency and latency (Table 1).

DISCUSSION

This study has demonstrated the feasibility of objective sleep assessment in children with LMP via waist actigraphy. Furthermore, this pilot data has highlighted the possible differences in sleep quality between TD children and those with LMP. Given the diverse negative impacts of sleep disturbance, which may augment the physiological and psychosocial impacts of low motor proficiency, clinically viable objective assessments are of primary importance.

As a pilot study with a small sample size representative of the clinical population and gender differences between groups, future studies should further assess sleep objectively over a range of motor proficiencies, genders and ages.

REFERENCES


METHODS

Children aged 6-12 years old with the diagnosis of motor impairments were recruited from community based exercise programs in Western Australia. Of the 24 children recruited for this pilot study, 10 were considered LMP on their MABC-2 result (≤ 15th percentile) and results were compared to typically developing peers (>15th percentile). Aside from motor proficiency, no significant differences were seen in group descriptive characteristics including age (mean age = 7.8 SD ± 1.8) and body composition (mean BMI = 16.7 SD ± 2.2). However, the groups were not matched for gender due to the higher prevalence of males in the clinical population (female = 9, male = 11). Of the 24 children recruited, 20 completed the requirements for sleep analysis, including parent completion of the sleep diaries. Four participants failed to complete the required Actigraph wear time due to the child refusing to wear the watch. Between groups there was no statistically significant difference between total sleep time, however significant differences were seen across sleep efficiency and latency (Table 1).

<table>
<thead>
<tr>
<th>n=20</th>
<th>Typically Developing</th>
<th>Low Motor Proficiency</th>
<th>df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Standard Deviation</td>
<td>Mean</td>
<td>Standard Deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep Efficiency (%)</td>
<td>82.09</td>
<td>5.72</td>
<td>76.48</td>
<td>3.87</td>
<td>1</td>
</tr>
<tr>
<td>Total Sleep Time (mins)</td>
<td>505.58</td>
<td>40.97</td>
<td>485.34</td>
<td>32.39</td>
<td>1</td>
</tr>
</tbody>
</table>

DISCUSSION

This study has demonstrated the feasibility of objective sleep assessment in children with LMP via waist actigraphy. Furthermore, this pilot data has highlighted the possible differences in sleep quality between TD children and those with LMP. Given the diverse negative impacts of sleep disturbance, which may augment the physiological and psychosocial impacts of low motor proficiency, clinically viable objective assessments are of primary importance. As a pilot study with a small sample size representative of the clinical population and gender differences between groups, future studies should further assess sleep objectively over a range of motor proficiencies, genders and ages.

REFERENCES